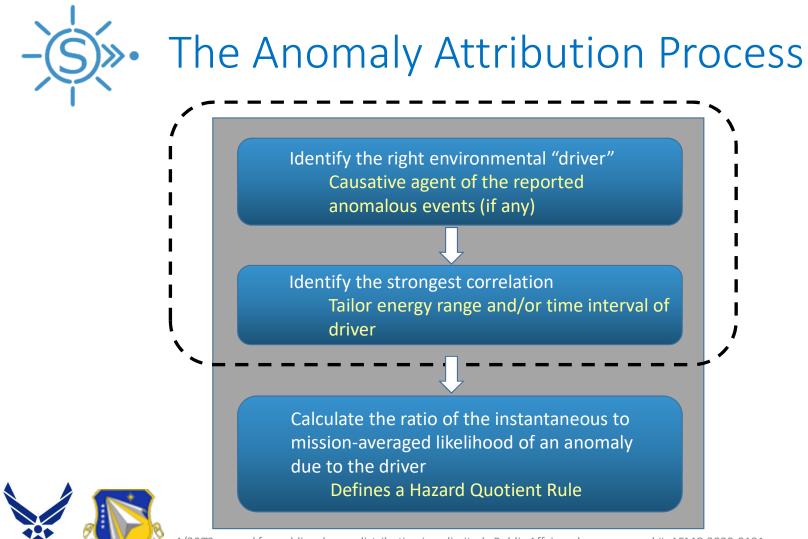


SEAC Space Environment to Anomaly Correlator

Dr. Jane M. Burward-Hoy Principal Investigator Mr. Tyler Krzykowski Lead Developer Dr. James Kestyn Developer Reece Broughton Developer Dr. Irene Budianto-Ho Aerospace Engineer

Dr. Gordon R. Wilson Program Manager, AFRL/RV

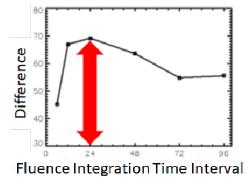
Approved for public release; distribution is unlimited. Public Affairs release approval #: AFMC-2020-0191.

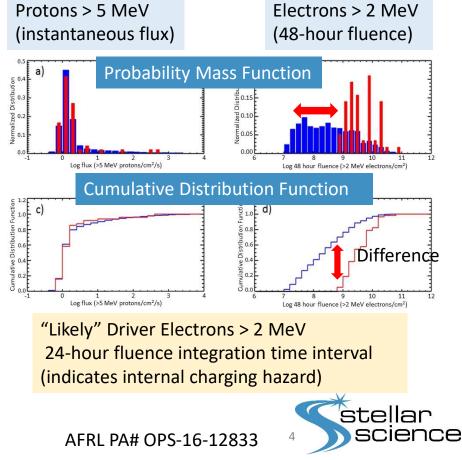

Space assets experience anomalous behaviors ("anomaly events")

- Operators would like to understand:
 - Whether anomaly events are due to space environment hazards
 - The type of environment a space asset of interest is susceptible to

There is a need for a tool that identifies the strongest correlation between anomaly events and the space environment

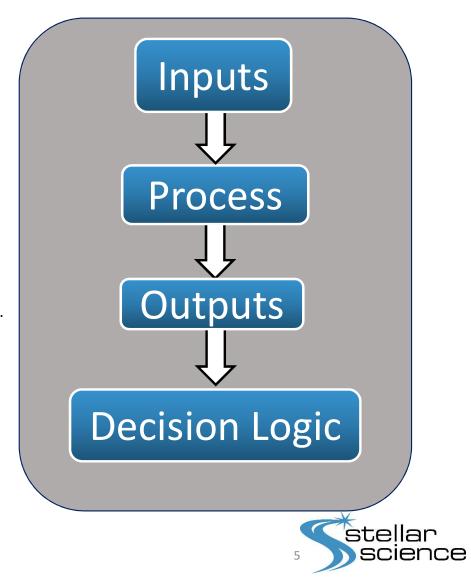
U.S. AIR FORCI


4/2020 proved for public release; distribution is unlimited. Public Affairs release approval #: AFMC-2020-0191.



The Process Applied Manually

- Exploit statistical methods (O'Brien [Ref. 1])
- Apply method to a communication satellite ("target")
 - Sensor mode switching anomaly in Wrenn [Ref. 2] and Wrenn [Ref. 3]
- Use GOES-7 EPS environmental data
 - Separated from target by ~90 deg longitude
- Construct Anomaly flux distribution
 - Match anomaly times to candidate driver distribution times
- Compare Electron and Proton candidate drivers:
 - Compute Cumulative Difference Functions
 - Quantify differences
 - Vary fluence integration time interval



- SEAC automates this manual process
- Configurable parameters in a single input JSON file
 - Fluence intervals, particle types
 - Input Environment Data
 - ✤ GOES, SCATHA, CRRES
 - ✤ GeoSu Model for electrons > 2 MeV (Ref. [4])
 - Statistical Methods
 Kalmagaray Smirnay Anderson Darling Maa
 - * Kolmogorov-Smirnov, Anderson-Darling, Mean Difference, etc.
 - Output options (Hazard Quotients, diagnostics data)
- Internal Decision logic
 - Permutation testing (p-value) and FWER and FDR (UC Berkeley Stats Dept)
- Standalone execution
 - Command Line Interface (CLI)

SEAC in Action (1/4): The Inputs

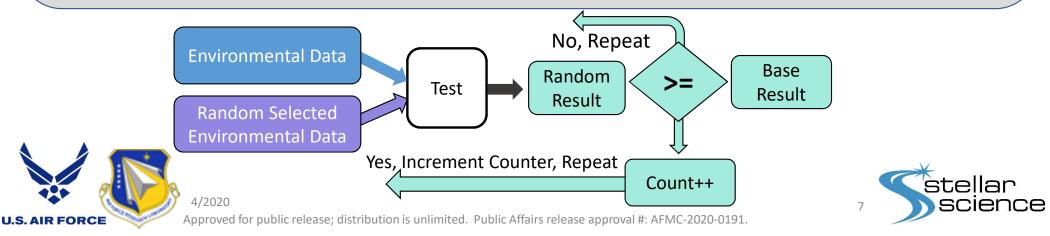
- Path to environmental data
- Analysis methods
- Path for outputs
- **Electron mapping option** (GeoSu Model)
- Environmental candidate drivers and desired fluence intervals
- Either mission lifetime duration or full climatology
- A thread count
- Anomaly listing
- Data target locations over mission duration 'dataTargets":[

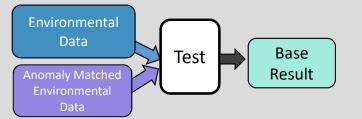
"targetId": "GOES-07",

"westLongitude":210.0

"locations":[

stellar scien

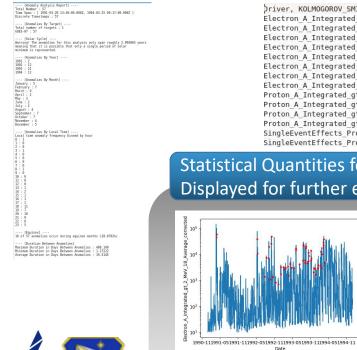



SEAC in Action (2/4): The Process

- 1. Each Statistical Method Generates a Test Statistic ("Base Result")
- 2. We calculate a Probability Value ("p-value") using Permutation Testing

p-value = Final Count / Bootstrap Iterations

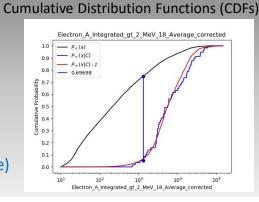
- An assumption free probability ranging from 0 to 1
- How likely we are to observe a result at least as extreme as the one produced by the initial anomaly set
- 3. Control Family-Wise Error Rate (FWER) and False Discovery Rate (FDR)
 - Compare p-value to corresponding critical values to determine significance



U.S. AIR FORCE

SEAC in Action (3/4): The Outputs

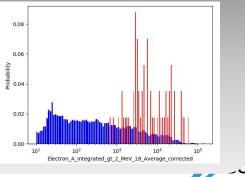
Anomaly Analysis Report


Reference Distribution (Blue) 4/2020 Anomaly Distribution (Red)

Driver Analysis Results

Driver, KOLMOGOROV SMIRNOV TEST

Electron A Integrated gt 2 MeV 18 Average corrected, 0.696981 Electron_A_Integrated_gt_2_MeV_18_Fluence_corrected, 0.700501 Electron_A_Integrated_gt_2_MeV_24_Average_corrected, 0.693081 Electron A Integrated gt 2 MeV 24 Fluence corrected, 0.689941 Electron_A_Integrated_gt_2_MeV_36_Average_corrected, 0.662485 Electron A Integrated gt 2 MeV 36 Fluence corrected, 0.663596 Electron_A_Integrated_gt_2_MeV_48_Average_corrected, 0.657655 Electron A Integrated gt 2 MeV 48 Fluence corrected, 0.656611 Proton A Integrated gt 5 MeV 36 Average corrected, 0.143283 Proton A Integrated gt 5 MeV 48 Average corrected, 0.141554 Proton_A_Integrated_gt_5_MeV_72_Average_corrected, 0.154249 Proton A Integrated gt 5 MeV 96 Average corrected, 0.126474 SingleEventEffects_Proton_A_Integrated_gt_10_MeV_corrected, 0.0192939 SingleEventEffects Proton A Integrated gt 30 MeV corrected, 0.0593347


Statistical Quantities for Every Candidate Driver Displayed for further evaluation by user

NOAA SPE Event List

	ntegrated_gt_10_MeVA cor		st
	te, End Date, Max Date, I		
	11:30:00.000,1991-02-01		
991-02-25	12:10:00.000,1991-02-25	13:40:00.000,1991-02-25	13:05:00.000,12.8
991-03-23	08:20:00.000,1991-03-30	21:40:00.000,1991-03-24	03:50:00.000,43500
991-04-03	08:15:00.000,1991-04-06	06:45:00.000,1991-04-04	10:00:00.000,52.4
991-05-13	03:00:00.000,1991-05-14	06:30:00.000,1991-05-13	09:05:00.000,358
991-05-31	12:25:00.000,1991-06-03	12:35:00.000,1991-06-01	05:00:00.000,22.9
991-06-04	08:20:00.000,1991-06-18	20:45:00.000,1991-06-11	14:20:00.000,3010
991-06-30	05:55:00.000,1991-07-05	11:15:00.000,1991-07-02	10:10:00.000,106
991-07-07	04:55:00.000,1991-07-11	11:55:00.000,1991-07-08	16:50:00.000,2310
991-07-12	00:00:00.000,1991-07-12	09:35:00.000,1991-07-12	03:05:00.000,17.1
991-08-26	17:40:00.000,1991-08-28	22:25:00.000,1991-08-27	18:30:00.000,236
991-10-01	17:40:00.000,1991-10-01	23:15:00.000,1991-10-01	18:10:00.000,12.4
991-10-28	13:00:00.000,1991-10-28	15:50:00.000,1991-10-28	14:40:00.000,39.8
991-10-30	07:45:00.000,1991-10-31	18:30:00.000,1991-10-30	08:10:00.000,94
992-02-07	06:45:00.000,1992-02-08	21:25:00.000,1992-02-07	11:15:00.000,77.8
992-03-16	08:40:00.000,1992-03-16	10:05:00.000,1992-03-16	09:00:00.000,10.4
992-05-09	10:05:00.000,1992-05-11	08:45:00.000,1992-05-09	21:00:00.000,4650
992-06-25	20:45:00.000,1992-06-29	16:05:00.000,1992-06-26	06:15:00.000,389
992-08-06	11:45:00.000,1992-08-06	20:35:00.000,1992-08-06	12:10:00.000.14.2
992-10-30	19:20:00.000,1992-11-06	01:20:00.000.1992-10-31	07:10:00.000.2680
	15:05:00.000,1993-03-04		
	20:10:00.000,1993-03-13		
994-02-20	03:05:00.000,1994-02-22	00:50:00.000,1994-02-21	09:00:00.000,10200
	00:30:00.000.1994-10-20		

Probability Mass Function (PMF)

lar Jience

Eliminated Candidates

Electron A Integrated gt 2 MeV_18 Fluence_corrected,0,0.00357143,0.00357143,ACCEPT Electron A Integrated gt 2 MeV_18 Average_corrected,0,0.00384615,0.00714286,ACCEPT Electron A Integrated gt 2 MeV_24 Average_corrected,0,0.004564545,0.010714286,ACCEPT Electron A Integrated gt 2 MeV_24 Fluence_corrected,0,0.00454545,0.0142857,ACCEPT Electron A Integrated gt 2 MeV_36 Fluence_corrected,0,0.00555556,0.0214286,ACCEPT Electron A Integrated gt 2 MeV_36 Fluence_corrected,0,0.00555556,0.0214286,ACCEPT Electron A Integrated gt 2 MeV_36 Average_corrected,0,0.00555556,0.0214286,ACCEPT Electron A Integrated gt 2 MeV_48 Average_corrected,0,0.00625,0.025,ACCEPT Electron A Integrated gt 2 MeV_48 Fluence_corrected,0.0.00635333,0.0321429,REJECT Proton A Integrated gt 5 MeV_72 Average_corrected,0.084,0.010,00357143,REJECT Proton A Integrated gt 5 MeV_36 Average_corrected,0.084,0.010,0.0357143,REJECT Proton A Integrated gt 5 MeV_96 Average_corrected,0.084,0.0166667,0.0428571,REJECT SingleEventEffects Proton A Integrated gt 30 MeV_corrected,0.0624,0.025,0.0428671,REJECT

priver Description, P-value, Holm-Bonferroni FWER Control, Benjamini-Hochberg FDR Control, Accept/Reject Candidate

Candidate, Statistic, Number of Reasons for Elimination, Reasons for Elimination

Proton_A_Integrated_gt_5_MeV_72_Average_corrected, 0.154249,2, Only 2 out of 57 occurred during a proton event. p-value for analysis was not significant. Proton_A_Integrated_gt_5_MeV_36_Average_corrected, 0.143283,2, Only 2 out of 57 occurred during a proton event. p-value for analysis was not significant. Proton_A_Integrated_gt_5_MeV_48_Average_corrected, 0.141554,2, Only 2 out of 57 occurred during a proton event. p-value for analysis was not significant. Proton_A_Integrated_gt_5_MeV_96_Average_corrected, 0.126474,2, Only 2 out of 57 occurred during a proton event. p-value for analysis was not significant. SingleEventEffects_Proton_A_Integrated_gt_30_MeV_corrected, 0.0593347,2, Only 2 out of 57 occurred during a proton event. p-value for analysis was not significant. SingleEventEffects_Proton_A_Integrated_gt_10_MeV_corrected, 0.0192939,2, Only 2 out of 57 occurred during a proton event. p-value for analysis was not significant.

4/2020

Candidate, Statistic Electron_A_Integrated_gt_2_MeV_18_Fluence_corrected, 0.700501 Electron_A_Integrated_gt_2_MeV_18_Average_corrected, 0.696981 Electron_A_Integrated_gt_2_MeV_24_Average_corrected, 0.693081 Electron_A_Integrated_gt_2_MeV_24_Fluence_corrected, 0.689941 Electron_A_Integrated_gt_2_MeV_36_Fluence_corrected, 0.663596 Electron_A_Integrated_gt_2_MeV_36_Average_corrected, 0.662485 Electron_A_Integrated_gt_2_MeV_48_Average_corrected, 0.657655 Electron_A_Integrated_gt_2_MeV_48_Fluence_corrected, 0.656611

Remaining Candidates

- Current SEAC analyses (in progress):
 - Use SCATHA, CRRES data, and anomaly lists for continued development
 - Quantify the uncertainty in attributing data from 'nearby' satellite to target (when target data not available)
- Challenge in obtaining:
 - Anomaly lists from targets of interest
 - Complete environmental datasets that span mission duration for targets of interest
- Awaiting publicly available datasets:
 - GOES 16 MPS-Lo flux data and Plasma Driver development

Availability/release timescale of SEAC application to stakeholders

- Based on user requirements
- Space environment data backend
- Integration into existing, operational tools
- New developments
 - Integrated Anomaly Toolkit
 - In concert with the SatCat tool (Janet Green of Space Hazard Applications)
 - Consultants include Aerospace (Paul O'Brien), AER (Rick Quinn)
 - Seeking partnerships, external investments

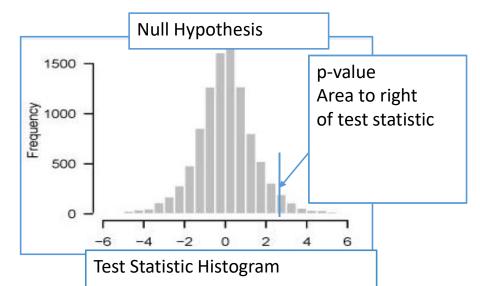
[1] O'Brien, T. P., SEAS-GEO: A spacecraft environmental anomalies expert system for geosynchronous orbit, Space Weather, vol. 7, S09003, doi:10.129/2009SW000473, 2009.

[2] Wrenn, G. L., Conclusive evidence for internal dielectric charging anomalies on geosynchronous communications spacecraft, J. Spacecraft and Rockets, vol. 32, No. 3, 1995.

[3] Wrenn, G. L., D. J. Rodgers, and K. A. Ryden, A solar cycle of spacecraft anomalies due to internal charging, Annales Geophysicae, 20: 953-956, 2002.

[4] Y.-J. Su, J. M. Quinn, W. R. Johnston, J. P. McCollough and M. J. Starks, "Specification of > 2 MeV electron flux as a function of local time and geomagnetic activity at geosynchronous orbit," *Space Weather*, pp. 470-486, 2014.

Approved for public release; distribution is unlimited. Public Affairs release approval #: AFMC-2020-0191.


Hypothesis Testing and Probability Value (p-value)

- The probability of observing a value (or a more extreme one) when those values are drawn from the known, and fixed distribution (i.e., null is true).
 - Probability values are uniformly distributed between 0 and 1 under Null Hypothesis
 - P-value histogram (and/or QQ Plot) can provide information on how 'well-behaved" p-values are when performing multiple hypothesis tests (and if there is sufficient "power" in the given test)
- Before testing, determine a significance threshold "alpha" (for example, 5%) below which p-values are significant ("Reject" the Null)

Ref:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164648

/2020

Interpreting p-value: no single index should substitute for scientific reasoning

- "P < 0.05" Might Not Mean What You Think: American Statistical Association Clarifies P Values <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5017929/</u>
- Advice from ASA Panel:
 - Fully report every aspect of the study (transparency).
 - Specifics of data collection and curation are critical for inference (were data deleted because they seemed to be 'outliers'?)
 - Consult a statistician when writing a grant application rather than after the study is finished
 - Limit the number of hypotheses to be tested to a realistic number that doesn't increase the false discovery rate
 - Be conservative in interpreting the data
 - Don't consider P = 0.05 as a magic number
 - And whenever possible, provide confidence intervals

P-value Using Permutation Testing

- > Produce an assumption free P-value that can tell us whether the results of a given test are significant
- Previously, we relied on critical values that are either based off a table or calculated from a formula that inherently have assumptions such as the type of test, etc.
- Permutation Testing is now used with any of the statistical tests in SEAC
- Procedure:
 - Perform test as usual where X is the environmental distribution and Y is the anomaly time matched distribution producing result R1
 - Randomly shuffle the anomaly times with times from the environmental distribution to produce a random sample Y_shuffled and repeat the test using this random sampling, producing R_shuffled.
 - Repeat at least 500 times so that we have a set of results R_shuffled_1 R_shuffled_500.
 - We can define our P-value as (the number of R_shuffled_ results that are >= R1) / 500
 - This gives us an assumption free probability ranging from 0 to 1 that tells us how likely we are to observe a result at least as extreme as the one produced by the initial anomaly set.

Family-Wise Error Rate control:

Holm-Bonferroni

- Given n tests, put p-values in ascending order
- Specify a target significant level (for example, 5%)

$$\alpha = 0.05$$

Determine the critical value for each p-value, pi

$$\frac{a}{n-i+1}$$

Compare and exclude those p-values that are greater than their corresponding critical values as they are *not* significant False Discovery Rate control:

Benjamini-Hochberg

- Given n tests, put p-values in ascending order
- Specify a False Discovery Rate (for example, 25%)

FDR = 0.25

Determine the critical value for each p-value, p_i
 i × *FDR*

п

Compare and include those p-values that are less than their corresponding critical values



Hazard Quotient: A continuous function **z(x)**, that when multiplied by the total probability of an anomaly for all **x**, gives the probability of that anomaly at any **x**.

For Example: If we knew the total probability P of an anomaly due to 2MeV electrons, the hazard quotient z(x) would allow us to calculate the probability of an anomaly (due to 2MeV electrons) at any fluence x as P(x) = z(x) * P

- Code provided by AFRL refactored and integrated into SEAC
 - Computes a non-linear least-squares fit to an assumed power law form, z(x) = x gamma
 - Tested against analytical case and the provided AFRL code
- SEAC computes the hazard quotient for significant drivers

